
Whitepaper

Avocado OS: Bridging Development Agility
and Production Readiness in Embedded Linux

avocadolinux.org

Table of Contents

�� Introduction: The Embedded Linux Dilemma 1

�� Origin Story: Why We Built Avocado OS 2

�� Technical Architecture Overview 3

�� Core System Components and Architecture 4

�� Development Workflow and Tooling 9

�� From Development to Production: A Seamless
Transition

13

�� Production Deployment Capabilities 14

�� Edge AI Optimization Techniques 16

�� The Open Source Philosophy 17

��� Future Roadmap and Development Plans 18

��� Avocado OS: Beyond an Operating System 19

��� Join the Avocado OS Community 21

In the world of embedded systems, product teams face a frustrating choice: optimize for development speed or
production readiness. This false dichotomy has forced engineers to choose between rapid iteration during development
and the security, reliability, and determinism required for deployment.

Avocado OS emerged to resolve this tension. Unlike traditional operating systems, it functions more as an embedded
product development framework than a monolithic OS—recognizing that for embedded devices, the operating system is
an extension of your product. Avocado delivers critical capabilities without forcing tradeoffs: immutable and deterministic
runtimes, fault-tolerant update options, simplified secure boot, full disk encryption, recovery kernels, manufacturing
modes, and end-of-line unit tests. These production-ready features coexist with rapid development workflows,
empowering teams to build better products faster.

As a Yocto-based distribution created in collaboration with the Linux Foundation, Avocado represents a fundamental shift
in embedded Linux development. It's not just another distribution—it's a complete rethinking of the development-to-
production workflow that provides a consistent environment supporting both rapid iteration and production reliability.

In essence, Avocado delivers what embedded teams have long sought but rarely found: the speed and flexibility of rapid
prototyping combined with the security and reliability demanded in production—all within a single, consistent framework.
By eliminating the traditional gap between development and deployment, Avocado cuts product timelines, reduces
integration headaches, and enables teams to ship higher-quality embedded products with confidence. The result? Faster
time-to-market, lower development costs, and more innovative products that remain secure and maintainable throughout
their lifecycle.

Intro

Avocadolinux.org 1

Introduction: The Embedded Linux Dilemma

Origin Story: Why We Built Avocado OS

The journey to create Avocado OS began with frustration—a sentiment familiar to many embedded Linux developers. At
Peridio, our engineering team consistently encountered the same challenges when starting new embedded projects:

We needed to rapidly set up development boards and prototype products, but found ourselves rebuilding the same Linux
systems over and over. The scaffolding, configuration, and massive compilation required to get even a simple proof-of-
concept running consumed valuable development time.

The fundamental problems were clear�

�� Development environments optimized for iteration were unsuitable for production. Developer-friendly distributions
with package managers made prototyping easy but couldn't deliver deterministic, reproducible system states for
deployment�

�� Production-optimized systems crippled development velocity. Creating minimal, secure images meant rebuilding entire
systems when requirements changed, making experimentation painfully slow�

�� Custom hardware required custom Linux components. Silicon vendors often needed specialized kernel configurations,
bootloaders, and device trees that didn't exist upstream, forcing complex build systems rather than binary
distributions.

We'd built a highly productive development environment, but as deployment approached, we realized we'd need to rethink
the system and provisioning procedures for production. The tools and workflows that made our team effective simply
couldn't transition to a secure, production-ready deployment.

This challenge was further complicated by manufacturing requirements. When provisioning strategies are considered too
late, teams often face painful realizations: development-friendly systems require lengthy setup times during
manufacturing, increasing costs and reducing throughput. What seemed like a 30-minute device setup process becomes
prohibitively expensive when multiplied across thousands of units.

Additionally, late-stage implementation of security features like secure boot and full-disk encryption requires significant
architectural changes. These aren't features that can be easily bolted on—they fundamentally impact the boot process,
update mechanisms, and recovery procedures. Retrofitting these capabilities often means rethinking the system
architecture that worked so well during development.

This challenge led us to ask a fundamental question: What if we could design a system that was both delightful to develop
on and production-ready from day one?

The answer became Avocado OS—a product framework for embedded systems that bridges the gap between
development speed and production readiness. By focusing specifically on the needs of embedded developers and learning
from both our successes and failures, we created a system that's composable, extensible, secure, and developer-friendly
without compromising on any of these attributes.

Origin Story: Why We Built Avocado OS

Avocadolinux.org 2

Technical Architecture Overview

Avocado OS represents a comprehensive product framework built on a foundation of proven open-source technologies.
Rather than being a monolithic operating system, it's an integrated collection of tools, services, and runtime components
designed to enable embedded product teams to rapidly develop and deploy production-ready systems.

Technical Architecture Overview

Avocadolinux.org 3

Foundation in Yocto and the Linux Foundation
The Yocto Project forms the core foundation of Avocado OS, chosen deliberately for its industry-standard approach to
building custom Linux distributions and robust support across diverse hardware architectures. Backed by the Linux
Foundation and a vibrant community, Yocto provides the flexibility to customize every aspect of the system while
maintaining compatibility with a wide range of embedded platforms.

However, we recognized that Yocto's power comes with notorious complexity. Unlike approaches that merely aim to
simplify Yocto, Avocado OS takes a fundamentally different approach. We use Yocto to create a comprehensive set of
binary packages and pre-built images that users can directly compose into complete systems without ever needing to
interact with Yocto's complexity.

Avocado takes vendor yocto meta-layers and
builds packages, SDK containers, and Images
and Extensions for a variety of popular targets
from vendors like NXP, NVIDIA, STMicro,
MediaTek, and more.

Developers use an Avocado SDK Container
image to install a toolchain and populate the
target sysroot development environment from
the Avocado package repository. The SDK
Container can cross compile their code, be used
for hardware in the loop debugging, and output
custom system extensions.

Developers declare runtime os recipes via a
provided avocado config which custom and
avocado built images and extensions to output a
btrfs var partition. Avocado images, custom
extensions, and boot components are signed /
encrypted with developer provided keys. The
result is a self executing archive that can be used
to provision a device into a desired state. This
same procedure is used with different
configurations to produce different boot modes.

Core System Components and Architecture

Avocadolinux.org 4

This binary distribution model is distinctly different from traditional approaches that employ runtime package
management, which inherently cannot guarantee deterministic system states. Instead, Avocado's package repositories are
used exclusively during the build phase to create custom system and configuration extensions before runtime. The result is
a deterministic, immutable, and cryptographically verifiable system image that can be signed and encrypted with
developer-owned keys while still leveraging upstream pre-built content.

The practical impact of this approach is transformative for embedded development teams. By shifting package
composition to the build phase while providing pre-built components, developers can rapidly assemble production-ready
systems without the resource-intensive build processes typically associated with embedded Linux. Teams can go from
concept to deployment without writing a single line of Yocto code or waiting through lengthy build cycles, while still
maintaining the security and reliability guarantees required for production environments.

At the same time, Avocado OS remains
fully extensible. When truly custom
components are needed, developers
can seamlessly extend the system at
the Yocto layer level, preserving all the
power and flexibility of the underlying
build system while benefiting from
Avocado's pre-built components for
everything else. This hybrid approach
provides unprecedented agility
without sacrificing customization
capabilities or system determinism.

Core System Components and Architecture
Avocado OS is structured as a
collection of carefully integrated
components designed to work
together seamlessly. At its heart,
Avocado leverages modern Linux
capabilities through three key
technologies that form the backbone
of our architecture:

Core System Components and Architecture

Avocadolinux.org 5

systemd as the Service Management Foundation
We've built upon systemd's robust service management capabilities to create a consistent, declarative approach to system
initialization and service control. This provides developers with a familiar framework while ensuring reliability in production
deployments. The systemd architecture enables dependency-based startup ordering, reliable service monitoring and
restart, and unified logging—all critical for embedded systems that must operate with minimal human intervention.

Particularly valuable is systemd's extension mechanism, which allows for composable, immutable runtimes. These
extensions can be developed and deployed independently, enabling teams to work in parallel while maintaining a cohesive
system.

Filesystem Strategy: btrfs and overlayfs

Avocado OS employs a sophisticated filesystem strategy
combining btrfs and overlayfs to enable its unique
composability model. The btrfs filesystem provides atomic
updates through copy-on-write snapshots, built-in integrity
verification, and efficient subvolume management. This
creates the foundation for our layered system architecture,
allowing for reliable, transactional updates critical in
embedded environments.

System and Configuration Extensions
Avocado OS leverages the systemd extension mechanism to provide its powerful composability features. This extension
system comes in two complementary forms that target different parts of the filesystem hierarchy:

System Extensions (sysext) dynamically extend the /usr/ and /
opt/ directory hierarchies at runtime without modifying the base
system. These extensions contain files and directories structured
like a regular OS tree, which are combined with the host OS using
overlayfs. When activated, the extension's resources appear
seamlessly within the system as if they were included in the base
OS itself. This is particularly valuable in immutable system images
where the base system resides on a read-only filesystem but
needs to be extended with additional functionality.

System extensions can be provided as plain directories, btrfs
subvolumes, or disk images (both with GPT partitioning or with
naked Linux filesystems like squashfs or erofs). They're
automatically activated during boot via the systemd-sysext
service, which runs after the underlying filesystems are mounted
but before basic.target is reached, ensuring that extended
functionality is available when regular services initialize.

Core System Components and Architecture

Avocadolinux.org 6

Configuration Extensions (confext) follow the same principle but operate exclusively on the /etc/ hierarchy. While
system extensions add executable code and resources to the system, configuration extensions provide a way to manage
and deploy system configuration. This separation allows teams to independently manage system software and
configuration, enabling runtime reconfiguration of OS services without deployment of new code or a complete OS update.

Both extension types support version compatibility enforcement through release files, ensuring that extensions are only
applied to compatible base systems. The extensions can be cryptographically verified and encrypted, maintaining the
security properties of the base system even when extended.

This extension mechanism enables Avocado OS to be both immutable and extensible simultaneously—a critical feature for
embedded systems that need to combine security and reliability with flexibility. Developers can add debugging tools,
specialized components, or configuration changes without modifying the base system image, while maintaining
cryptographic verification of all components.

Core System Components and Architecture

Layer Architecture and Composability Model
The most distinctive aspect of Avocado OS is its layered architecture, which represents a significant departure from
traditional embedded Linux approaches. Instead of a monolithic system image, Avocado organizes functionality into two
distinct layer types:

The Core OS Layer forms an immutable, secure foundation providing the kernel, system services, and essential utilities.
This layer is rigorously tested and secured, providing a stable base for all Avocado systems.

Extension Layers allow for modular functionality additions without compromising core system integrity. These composable
components extend system functionality while maintaining the security and reliability of the overall system. Extension
layers are where developers add their applications, specialized tooling, and additional services.

Avocadolinux.org 7

Applications and services are deployed through these extension layers, which can be cross-compiled for the target
architecture using Avocado's SDK. This approach has several advantages�

�� Application Isolation: Each extension layer can contain a complete application environment with all its dependencies,
preventing conflicts with other components or the base system�

�� Simplified Deployment: Applications can be packaged as self-contained extension layers that are simply added to the
system during builds or updates, eliminating complex installation procedures�

�� Prebuilt Solutions: Avocado provides prebuilt extension layers for common requirements such as container runtimes
(e.g., Docker, Podman), development tools, or specialized libraries, which can be composed into the system without
any additional build effort�

�� Custom Application Integration: Developers can create custom extension layers for their applications by using
Avocado's SDK to cross-compile their code and package it with all necessary dependencies, creating a cohesive
extension that interacts seamlessly with the rest of the system.

For example, a team building an edge AI application might compose a system using the Avocado core layer, prebuilt
extension layers for container runtime and networking tools, and their own custom extension layer containing their
application code and specialized AI libraries.

This architecture enables developers to start with a working system and add only what they need, maintain clear
boundaries between system components, update individual layers independently, and create deterministic, reproducible
builds. The composability model is central to Avocado's ability to support both rapid development and production
readiness.

Development Toolchain and SDK
Avocado OS includes a comprehensive CLI and development toolchain that simplifies the creation and management of
embedded systems. The toolchain provides containerized build environments that ensure consistency across development
teams and CI/CD pipelines.

While Avocado leverages Yocto to build its extensive SDK toolchain packages, we take a fundamentally different approach
to their deployment. Rather than installing all available development tools by default—which would create bloated
development environments—Avocado provides a declarative package selection mechanism. This allows developers to
precisely specify which packages to install into their system extension build environment.

Core System Components and Architecture

Avocadolinux.org 8

The Avocado SDK CLI offers several key advantages�

�� Declarative Package Selection: Developers can define exactly which packages they need for their specific
application, creating lean, purpose-built development environments�

�� Toolchain Extension: The SDK can be extended with additional cross-compilation tools and libraries as needed for
specialized development requirements, all through simple declarative configuration�

�� Custom Package Priority: Developers can produce their own packages from custom Yocto builds or other cross-
compilation environments. These custom packages take priority over the same packages in upstream Avocado
repositories, allowing teams to use customized versions of libraries or tools when needed�

�� Versioned Dependencies: The SDK manages package versions and dependencies, ensuring consistent, reproducible
builds across development, testing, and production environments.

The SDK generation capabilities automatically create reproducible cross-compilation environments tailored to the target
hardware, including necessary compilers, libraries, and tools. These can be integrated with popular development
environments, enabling teams to use their preferred languages and frameworks while ensuring compatibility with the
target system.

Security Architecture
Security is integrated into the very foundation of Avocado
OS rather than added as an afterthought. The system
provides comprehensive secure boot support with
integration for hardware security elements, establishing a
chain of trust from bootloader to application code. This
ensures that only authorized code can run on the system,
protecting against both malicious attacks and unintentional
corruption.

Implementing secure boot has traditionally been a
challenging aspects of embedded system security,
requiring deep hardware-specific knowledge and complex,
vendor-specific tooling. Avocado OS dramatically simplifies
this process through a unified command-line interface that
abstracts away the hardware-specific complexity. This
interface provides consistent commands to enable and
configure secure boot across diverse hardware platforms.

Under the hood, this CLI leverages a modular backend with
board-specific modules created from host tools provided
by vendor Yocto layers. When a developer issues a
command to configure secure boot, the CLI automatically
invokes the appropriate board-specific module, handling all
the intricate details of key management, signature
generation, and hardware configuration. These modules are
packaged into Avocado's composable SDK package
repositories, making them available through the same
declarative package selection system used for other
development tools.

This integration ensures that secure boot tools are installed
only when needed and are consistently versioned with the
rest of the development environment. This approach means
that developers can implement robust secure boot without
becoming experts in the specific security mechanisms of
each silicon vendor.

For example, the same simple command can be used
whether working with NXP i.MX processors, NVIDIA Jetson,
or Raspberry Pi devices—each with their own unique secure
boot implementations. The system handles the complexity,
allowing the team to focus on their application rather than
security implementation details.

Full disk encryption using LUKS with hardware key
management protects sensitive data at rest, while DM-
Verity provides integrity verification for read-only
filesystems. The immutable system core prevents runtime
modifications to critical system components, and the
layered architecture extends this security model throughout
the system with cryptographic verification of all system
layers.

By integrating these security features from the beginning
and providing simplified interfaces for their configuration,
Avocado OS enables developers to create inherently secure
products without requiring specialized security expertise,
meeting the increasingly stringent regulatory requirements
for embedded devices.

Development Workflow and Tooling

Avocadolinux.org 9

Development Workflow and Tooling
The true test of any embedded Linux distribution isn't just its technical architecture—it's how effectively it supports the
day-to-day workflow of developers. Avocado OS was designed from the ground up to create a genuinely enjoyable
development experience that addresses the common pain points of embedded development.

The Interactive Development Environment
Avocado transforms embedded development from a cumbersome, time-consuming process into an interactive,
responsive workflow that feels more like modern web development than traditional embedded systems work.

At the heart of this transformation is Avocado's live development environment. Developers work in containerized
environments on their host machines, with cross-compilation tools and libraries automatically configured for their target
hardware. But rather than going through the traditional edit-compile-flash-boot-test cycle for each change, Avocado
creates a seamless connection between development and target�

�� Live NFS-Mounted Extensions: System and configuration extensions are NFS-mounted from the developer's machine
directly into the running target device. This means that changes to application code, configuration files, or system
components are immediately reflected on the target without redeployment�

�� Interactive Debugging: Developers can modify code, rebuild components, and immediately see the results on the
target device. Combined with GDB server integration, this creates a truly interactive debugging experience where
developers can set breakpoints, inspect variables, and step through code as if they were developing on their local
machine�

�� Soft Reboot Capabilities: When changes require service restarts, developers can trigger soft reboots that quickly
restart only the necessary components without a full system reboot, further accelerating the development cycle.

This workflow eliminates the lengthy wait times typical in embedded development. A code change that would traditionally
require minutes to deploy can now be tested in seconds, enabling rapid prototyping and experimentation.

Development Workflow and Tooling

Avocadolinux.org 10

Multi-Target Development and Deployment
Avocado's architecture elegantly solves one of the most challenging aspects of embedded development: supporting
multiple target devices with a single codebase.

The same declarative configuration used to build a system for one target can be easily adapted for different hardware
platforms. Avocado automatically handles the underlying differences in toolchains, kernel configurations, and hardware-
specific components.

Fleet Heterogeneity Support

For products that deploy across diverse hardware platforms,
Avocado provides significant advantages:

Unified Development Approach: Developers can work on
multiple target platforms using consistent tools and
workflows, minimizing context switching and knowledge
fragmentation.

Simplified CI/CD Integration: The same pipelines can build
and test for multiple hardware targets, with Avocado
managing the complexity of cross-compilation and
hardware-specific configurations.

Fleet Heterogeneity Support: Products that deploy across
different hardware variants can maintain a single codebase
and development process, with hardware-specific
differences isolated to configuration rather than embedded
in application code.

Incremental Migration Path: Teams can gradually transition
from legacy platforms to newer hardware by maintaining
common application layers across both platforms,
significantly reducing the risk and effort of hardware
transitions.

Development Workflow and Tooling

Avocadolinux.org 11

Single-Board Heterogeneity and Accelerator Integration
Beyond supporting diverse device fleets, Avocado's modular, composable architecture provides sophisticated support for
the complex heterogeneous computing environments found on modern SoCs:

�� Co-Processor Integration: Modern embedded
systems often include specialized processing
units such as DSPs, GPUs, or dedicated AI
accelerators. Avocado's extension system
allows these heterogeneous components to be
managed through specific extension layers that
encapsulate the driver, runtime, and integration
code needed for each accelerator. This
approach means that�

� Teams can develop and maintain
accelerator support independently from
application cod�

� Support for new accelerators can be added
without disrupting existing system
component�

� Accelerator-specific optimization libraries
can be packaged and updated separatel�

�� Hardware Abstraction: Avocado provides
consistent APIs across different hardware
acceleration technologies through its extension
mechanism, allowing application code to
remain largely unchanged even when the
underlying acceleration architecture changes.

�� Extensible resource management: Rather than imposing specific resource scheduling policies, Avocado's extension
system allows developers to implement their own resource management strategies tailored to their specific AI
workloads. This flexibility enables teams to create custom allocation policies for memory, CPU, and accelerators that
match their application's unique requirements�

�� Instrumented performance analysis: Through lightweight instrumentation hooks in the extension system, Avocado
enables fine-grained performance analysis of AI workloads without modifying application code. This helps developers
identify optimization opportunities regardless of which AI framework they've chosen.

This approach to heterogeneous computing dramatically reduces the complexity of integrating and maintaining support
for specialized hardware accelerators—traditionally one of the most challenging aspects of embedded system
development. By modularizing accelerator support through the extension system, Avocado allows teams to benefit from
specialized hardware without the integration complexities that typically accompany it.

Typically, accelerator support relies on firmware files that must be included on the filesystem in specific locations. Without
a structured approach, integrating these components often requires specialized tribal knowledge, creating bottlenecks in
development teams. Avocado's system extensions provide a clean solution: firmware developers can package their code,
configuration, and supporting files as extensions without requiring system integrators to understand the intricate details of
each accelerator's requirements. This separation of concerns allows development teams to scale more effectively, with
specialists focusing on their areas of expertise while maintaining a cohesive, functional system.

Development Workflow and Tooling

Avocadolinux.org 12

Virtualized Development with QEMU Integration

Avocado takes advantage of QEMU to create virtualized development environments that complement physical hardware
targets�

�� Automated Unit Testing: Application code can be automatically tested in virtualized environments that closely match
production hardware, enabling comprehensive test suites to run on every commit without requiring physical devices�

�� Development Without Hardware: Developers can begin working on new features or products before hardware is
available, using virtualized targets that behave consistently with physical devices�

�� Hardware/Software Co-Development: Hardware and software teams can work in parallel, with software development
proceeding on virtual platforms while hardware is still being designed or refined.

The virtualized environment uses the same extension mechanisms, security features, and deployment processes as
physical hardware, ensuring that code behaves consistently across both environments.

From Development to Production: A Seamless Transition

Avocadolinux.org 13

From Development to Production: A Seamless Transition
Perhaps the most significant advantage of Avocado's development approach is that it eliminates the traditional gap
between development environments and production systems. Because developers are working with the same system
components, layering architecture, and security features that will be used in production, there's no painful transition when
moving from development to deployment

Security Continuity Through dm-verity and Encryption
Avocado further streamlines the transition to production by integrating security features directly into the build system.
Both core boot images and extension layers support dm-verity integrity verification and LUKS encryption from day one.
This means that:

�� Security-by-Default: Development builds can run with the same security controls that will be used in production,
eliminating last-minute surprises when security features are enabled�

�� Incremental Hardening: Teams can progressively enable security features during development, validating each step
rather than facing a high-risk "security integration phase" near product completion�

�� Validated Chains of Trust: The same signing keys and verification paths used in development can be transferred to
production signing ceremonies, maintaining a consistent security model throughout the product lifecycle.

This approach eliminates one of the most common sources of late-stage project delays: discovering compatibility issues
when enabling security features right before production.

Operational Continuity Through Multiple Boot Modes
Production devices must operate reliably across various lifecycle stages—from manufacturing and provisioning to field
deployment and maintenance. Avocado addresses this challenge through a unified codebase with multiple operational
modes, selected through the extension mechanism.

At a technical level, these boot modes are implemented through different compositions of system and configuration
extensions. Logic in the bootloader can determine which mode to boot into based on runtime-provided parameters in the
boot environment, allowing flexible mode selection without hard-coded behaviors.

It's important to note that Avocado doesn't mandate specific boot modes. Rather, its architecture enables implementing
common patterns seen in embedded product lifecycles. These patterns typically include:

Development Mode with extensions for debugging tools,
diagnostic utilities, enhanced logging, and relaxed security
policies to facilitate rapid development and troubleshooting.

Manufacturing Mode supporting factory testing,
calibration, and provisioning without requiring changes to
the core software. This enables manufacturing-specific
operations while maintaining software consistency

Recovery Mode focused on system restoration with
minimal dependencies, providing resilient mechanisms to
recover from failed updates or system corruption.

Production Mode implementing the full security posture
required for field deployment, with appropriate access
controls and optimized performance.

Production Deployment Capabilities

Avocadolinux.org 14

The key architectural advantage is that a single base image can support these different operational contexts through
extension composition rather than maintaining separate system images. This approach offers several benefits�

�� Code sharing between modes eliminates inconsistencies and ensures bug fixes propagate automatically�

�� Mode transitions can be implemented by activating different extension sets rather than reimaging the entire system�

�� Organizations can create custom modes for specific operational needs by composing appropriate extensions.

This unified approach significantly reduces the complexity typically associated with managing multiple system
configurations throughout a product's lifecycle, while providing the flexibility to adapt to specific project requirements.

Production Deployment Capabilities
Embedded systems in production environments face threats and operational challenges fundamentally different from
development contexts. Avocado OS addresses these challenges through architectural decisions that make production-
grade reliability and security integral to the system rather than bolt-on afterthoughts.

Security Architecture: Defense in Depth
Production-ready embedded systems demand a layered security approach that begins at boot and extends through the
entire system lifecycle. Avocado implements this through a comprehensive security architecture that protects against
both sophisticated attacks and environmental challenges.

The foundation of this architecture is secure boot, implemented through a board-agnostic CLI that abstracts the complex,
vendor-specific mechanisms required to establish a hardware root of trust. Under the hood, this interface works with
cryptographic hardware elements—TPMs, TEEs, and secure enclaves—through board-specific modules packaged in
Avocado's SDK repositories. This approach transforms what is typically the most technically complex aspect of embedded
security into a straightforward, reproducible process.

Secure boot establishes an unbroken cryptographic chain of trust, beginning with hardware-verified boot components
and extending through the kernel, core system, and all loaded extension layers. Each component in this chain verifies the
next before transferring control, creating a continuous verification path from silicon to application code. By supporting
multiple signing authorities, Avocado enables sophisticated security models where different components can be
authorized by separate entities—for example, allowing OEMs to control core system components while enabling third-
party vendors to sign extensions.

This verification chain extends beyond boot time through Avocado's integration of dm-verity, which provides continuous
integrity verification of read-only filesystems. Rather than performing point-in-time verification, dm-verity intercepts all
filesystem reads, verifying each block against a pre-computed hash tree. This creates an efficient mechanism for
detecting unauthorized modifications to system components without significant performance overhead.

Production Deployment Capabilities

Avocadolinux.org 15

Data Protection and Encryption
Protecting sensitive data at rest requires more than just
enabling encryption—it demands a cohesive approach that
accounts for key management, performance implications,
and recovery scenarios. Avocado addresses these concerns
through its implementation of LUKS (Linux Unified Key
Setup) encryption.

The system supports hardware-backed key storage where
available, leveraging secure elements to protect encryption
keys without exposing them to the main application
processor. For devices without dedicated security
hardware, Avocado implements split-knowledge key
derivation schemes that combine multiple sources to
generate encryption keys, making key extraction
significantly more difficult.

Recognizing that encryption requirements vary across
different data types, Avocado supports targeted encryption
models beyond full-disk encryption. System extensions can
implement per-application encryption domains, where
sensitive application data is encrypted with application-
specific keys. This multi-layered approach balances security
with performance, avoiding unnecessary encryption
overhead for non-sensitive data while providing strong
protection where needed.

All encryption operations leverage hardware acceleration
where available. The system automatically detects and
utilizes cryptographic accelerators present in the target
hardware, falling back to optimized software
implementations when necessary. This approach ensures
consistent security properties across diverse hardware
platforms while maximizing performance.

Reliability Under Adverse Conditions
Production environments often subject devices to
challenging conditions—unstable power, environmental
extremes, and intermittent connectivity. Avocado's
architecture directly addresses these challenges through
design patterns that prioritize operational continuity.

The system implements intelligent power management with
configurable behavior for unexpected power loss. When
power failure is detected, Avocado initiates an ordered
shutdown sequence prioritized to protect data integrity,
ensuring that critical operations complete and write caches
are flushed before power is exhausted. On subsequent
boot, the system performs integrity verification and
recovery as needed, detecting and repairing
inconsistencies that might have resulted from the
unexpected shutdown.

For devices operating in harsh environmental conditions,
Avocado's fault-tolerant approach extends to temperature
management, with thermal monitoring and adaptive
performance throttling to prevent damage during
temperature extremes.

Critical system functions maintain operation even during
aggressive throttling, ensuring that basic functionality and
update capabilities remain available.

Intermittent connectivity—common in many IoT
deployments—is addressed through a store-and-forward
architecture for system management operations. Updates,
configuration changes, and diagnostic data utilize a
transaction-based model that maintains consistency even
when connectivity is interrupted. This approach ensures
that devices eventually reach their intended state without
requiring continuous connectivity during management
operations.

This comprehensive approach to production readiness
makes Avocado OS particularly suitable for mission-critical
applications where reliability and security cannot be
compromised. By addressing these concerns as
fundamental architectural elements rather than add-on
features, Avocado enables developers to create embedded
systems that are trustworthy from the start.

Edge AI Optimization Techniques

Avocadolinux.org 16

Edge AI Optimization Techniques

Modern embedded systems are increasingly being used for sophisticated edge computing applications, particularly in the
realm of artificial intelligence and machine learning. Avocado OS is specifically optimized for these demanding use cases.

The Unique Demands of Modern Edge Computing
Edge computing introduces new requirements for embedded systems�

� Processing of large data volumes with constrained resource�
� Real-time analysis and decision makin�
� Integration of specialized hardware accelerator�
� Balancing computation between edge and clou�
� Managing power consumption for battery-operated devices

These requirements push traditional embedded Linux distributions beyond their design parameters, leading to
compromises in performance, reliability, or developer experience.

Avocado OS includes specific optimizations for edge AI applications�

� Flexible framework support: Rather than directly integrating specific AI frameworks, Avocado's extension system
allows developers to package and deploy any AI ecosystem they prefer—whether Python-based, CUDA-accelerated, or
Elixir-powered. This language-agnostic approach enables data scientists and AI engineers to work in their preferred
environments while seamlessly deploying to embedded targets. Teams can use familiar tools and languages for model
development, then deploy the same code to production devices without painful rewrites or compromises�

� Runtime environment isolation: AI frameworks often have complex dependency trees that can conflict with system
libraries. Avocado's system extension mechanism creates isolated runtime environments for AI applications, preventing
dependency conflicts while maintaining system integrity. This isolation means that data science teams can use cutting-
edge libraries and frameworks without compromising system stability, while operations teams can maintain strict
control over the underlying OS. Engineers can even deploy multiple AI frameworks simultaneously without dependency
hell—perfect for progressive migration between frameworks or heterogeneous processing pipelines�

� Accelerator abstraction layer: Instead of coupling directly to specific hardware acceleration APIs, Avocado provides a
consistent abstraction layer that applications can target. The actual implementation is provided through hardware-
specific extensions, allowing AI applications to benefit from specialized hardware without tight coupling to vendor-
specific APIs. This abstraction enables hardware flexibility throughout the product lifecycle—prototyping on available
development boards, then seamlessly transitioning to production hardware with different acceleration capabilities
without application rewrites.

These capabilities create a flexible foundation for edge AI that respects developer choice rather than mandating specific
frameworks or languages. By focusing on the structural challenges of deploying AI on embedded systems rather than
integrating specific technologies, Avocado provides long-term flexibility as AI ecosystems continue to evolve.

The Open Source Philosophy

Avocadolinux.org 17

The Open Source Philosophy
Avocado OS is not just a technical solution—it represents a philosophy about how embedded Linux development should
work, and a commitment to the open source community.

Why We Built Avocado OS as an Open-Source Project
We made Avocado OS open source for several key reasons:

� Belief in collaborative innovation: The best software
emerges from diverse contributions and perspectives,
creating solutions that no single team could envision
alone�

� Commitment to accessibility: Embedded development
should be accessible to all developers, not just those
with specialized expertise or deep corporate pockets�

� Recognition of shared challenges: The problems we're
solving are industry-wide, not specific to our
organization—we're all in this together�

� Desire for longevity: Open source ensures that the
platform can evolve and improve beyond any single
company's involvement, surviving and thriving for
decades. 

� Essential auditability: Security-critical embedded
systems demand transparency—open source enables
thorough auditing of every line of code, building trust
through visibility rather than obscurity�

� Community ownership: When developers can see,
modify, and contribute to the code that powers their
devices, they become stakeholders in its success rather
than just consumers.

This commitment to open source is fundamental to our
mission of improving the embedded Linux development
experience for everyone—not as a marketing strategy, but
as our core ethos.

The Power of Community
The Avocado community represents a powerful convergence of expertise from device manufacturers, product companies,
and silicon vendors—all collaborating to solve the real-world challenges that embedded product companies face when
implementing across diverse hardware platforms:

� Industry-wide collaboration: When silicon vendors,
ODMs, and product companies work together in an open
environment, previously isolated solutions to common
problems become shared knowledge that benefits the
entire ecosystem�

� Vendor-specific expertise: Silicon vendors bring deep
knowledge of their hardware platforms, contributing
optimizations and reference implementations that would
be impossible for individual product teams to develop
independently�

� Cross-platform insights: Companies implementing
products across multiple hardware platforms contribute
invaluable experience about real-world integration
challenges and effective abstraction strategies.

� Manufacturing know-how: Device manufacturers share
practical wisdom about production processes, testing
methodologies, and supply chain considerations that
transforms theoretical capabilities into manufacturable
products�

� Combined solution development: When facing
regulatory requirements, performance bottlenecks, or
security vulnerabilities, the combined expertise of this
diverse community can develop solutions far more
robust than any single organization could create alone.

The Open Source Philosophy

Avocadolinux.org 18

This collaborative ecosystem transforms the historically fragmented embedded Linux landscape, where each product
team previously struggled with similar problems in isolation. Instead, Avocado creates a shared foundation where
hardware vendors, software developers, and product manufacturers can contribute their specialized knowledge while
benefiting from others' expertise.

The resulting cross-pollination of ideas and technologies creates a positive feedback loop—silicon vendors gain broader
adoption through easier implementation, product companies achieve faster time-to-market with better reliability, and the
entire community advances the state of embedded Linux development in ways that isolated proprietary solutions simply
cannot match.

Peridio's Involvement with Linux Foundation

As active members of the Linux Foundation, we don't just talk about open source—we live it�

� Contributing meaningful code to core project�
� Participating energetically in technical working group�
� Sharing knowledge and best practices freel�
� Supporting community events and initiatives with time and resource�
� Advocating passionately for embedded developers at all levels

This involvement ensures that Avocado OS remains aligned with industry standards and benefits from the collective
expertise of the Linux community.

Community Collaboration Model

Avocado OS thrives on our transparent, inclusive development model�

� Open development process with public repositories where every decision is visibl�
� Clear contribution guidelines that welcome developers of all experience level�
� Responsive maintainers who value every interactio�
� Regular release cycles driven by community need�
� Community decision-making for major features, ensuring the project serves its users first

We welcome contributions of all kinds, from bug reports and feature requests to code contributions and documentation
improvements. Your voice matters here—whether you're a hobbyist or a Fortune 500 company.

How Open Source Drives Innovation in Embedded Systems

The open source model is particularly transformative for embedded systems�

� Shared knowledge reduces duplication of effort, freeing resources for true innovatio�
� Diverse hardware support emerges naturally through the passion of community member�
� Security benefits from many eyes on the code—vulnerabilities have nowhere to hid�
� Best practices evolve through collective experience rather than isolated experimentatio�
� Interoperability improves through standard interfaces, breaking down artificial barriers

By embracing open source, Avocado OS leverages these advantages to create a
platform that's greater than what any single organization could achieve alone—a
platform that belongs to everyone who uses and contributes to it.

Future Roadmap and Development Plans + Avocado OS: Beyond an Operating System

Avocadolinux.org 19

Future Roadmap and Development Plans
The future of Avocado OS is bright and community-driven�

� Expanded hardware support based on user needs and contribution�
� Enhanced developer tooling that makes embedded development joyfu�
� Deeper integration with edge AI frameworks as intelligent devices proliferat�
� Improved update and management capabilities for long-term sustainabilit�
� Simplified migration paths from other distributions to welcome more developers to the community

These developments will be driven by community needs and contributions, ensuring that Avocado OS continues to evolve
in alignment with real-world requirements—not corporate roadmaps or quarterly profit goals.

Avocado OS: Beyond an Operating System
Avocado represents a fundamental shift in approaching embedded product development—transcending the traditional
notion of an operating system to become an integral extension of your product itself. Throughout this whitepaper, we've
illustrated how Avocado bridges the gap between development agility and production readiness, but its value extends
beyond technical capabilities to transform the entire product lifecycle.

Unlike conventional embedded Linux distributions that merely provide a foundation for applications, Avocado functions as
a comprehensive product framework that unifies development, deployment, manufacturing, and maintenance. This holistic
approach addresses the full spectrum of embedded product challenges:

Development Acceleration: The interactive development
environment with live code reloading, hardware-in-the-loop
debugging, and containerized build environments
dramatically reduces development cycles from minutes to
seconds.  

Production Integration: By maintaining the same
environment from development to production, Avocado
eliminates the painful "integration phase" that traditionally
occurs when transitioning between development and
production environments.  

Manufacturing Simplification: Through deterministic
builds, multiple boot modes, and comprehensive testing
frameworks, Avocado streamlines manufacturing
processes, reducing provisioning time and ensuring
consistent quality.  

Maintenance Efficiency: The modular extension system
enables targeted updates to specific system components
rather than complete system reimaging, dramatically
reducing bandwidth requirements and update complexity
for deployed devices.

Security Implementation: Rather than treating security as
a separate concern, Avocado integrates verification,
encryption, and access controls throughout the system,
making security an inherent property rather than an add-on
feature.  

Yocto Interoperability: Avocado builds upon the solid
foundation of the Yocto Project while addressing its
complexity challenges. It preserves Yocto's power and
flexibility for hardware support while shielding developers
from its steep learning curve and lengthy build times. 

Extensibility Framework: Through a structured approach
to system extensions, Avocado makes it possible to
integrate custom components, vendor-specific drivers, and
specialized functions without disrupting the core system
integrity or reproducibility.

Vendor-Driven LTS Support: Avocado's architecture
enables straightforward integration of vendor layer updates,
making it significantly easier to keep systems updated with
security patches and CVE fixes without the overhead of
migrating application recipes directly in Yocto. 

Avocado OS: Beyond an Operating System

Avocadolinux.org 20

This integrated approach yields tangible benefits throughout the product lifecycle�

�� Reduced Time-to-Market: By eliminating traditional bottlenecks between development, integration, and
manufacturing, products reach market faster without sacrificing quality or security�

�� Enhanced Product Reliability: The consistent environment across all stages ensures that what works in development
works identically in production, eliminating an entire class of integration problems�

�� Simplified Maintenance: The ability to update specific components independently reduces the scope and risk of field
updates, improving long-term supportability�

�� Future-Proof Architecture: The modular, composable nature of the system allows for incremental evolution over time,
extending product lifespans and preserving development investments�

�� Streamlined Security Updates: By leveraging vendor layer updates directly, security vulnerabilities can be addressed
rapidly without the complexity of rebuilding entire systems or maintaining complex Yocto layer configurations.

As active members of the Yocto community, the Peridio team has contributed numerous
improvements that benefit both Avocado OS users and the broader ecosystem, including
performance optimizations for build processes, enhanced error reporting capabilities, and improved
documentation. These contributions reflect our commitment to strengthening the foundation upon
which Avocado is built.

Avocado's pre-built component repository accelerates development by providing ready-to-use
building blocks for common functionality, allowing developers to focus on their application-specific
code rather than recreating standard components. This repository, combined with the standardized
approach to hardware support through Board Support Packages (BSPs), dramatically simplifies the
process of bringing up new hardware platforms.

In essence, Avocado doesn't just provide the
technical foundation for your product—it
transforms how your organization approaches
embedded development, breaking down silos
between development, operations,
manufacturing, and security teams. By integrating
these traditionally separate concerns into a
unified framework, Avocado enables a more
collaborative, efficient approach to bringing
embedded products to market and maintaining
them throughout their lifecycle.

Join us in building this future—your
contributions, feedback, and passion
are what make Avocado OS not just
possible, but extraordinary.

Avocadolinux.org

Join the Community
Ready to transform your embedded Linux development experience? By joining the Avocado OS community, you're not just
adopting a new operating system—you're becoming part of a movement that's redefining how embedded products are
built.

Whether you're a silicon vendor, device manufacturer, or product developer, your expertise and perspective will strengthen
our collective capabilities. Together, we're creating a future where embedded development is both agile and production-
ready, where security isn't an afterthought, and where innovation happens without compromise.

Join us today and help shape the next generation of embedded Linux development—because better embedded systems
aren't just possible, they're happening right now with Avocado OS.

GET STARTED

Who is involved?

Members of The Linux Foundation Backed by Peridio Members of the Yocto Project

https://discord.com/invite/rH77fKpKAj

